ASU's Modeling Instruction Program continues teaching legacy in online format

By

Kirsten Kraklio

For three decades, teachers from around the Phoenix metro area – and as far away as Singapore – have gathered on Arizona State University’s Tempe campus to learn as students in the Department of Physics’ Modeling Instruction Program. This year, in response to the COVID-19 pandemic, the program adapted to an online format for the first time in the its history.

“I always say, I think it's amazing that we get teachers to come to Phoenix in the summer to learn,” said Bob Culbertson, the director of the Master of Natural Science (MNS) program and associate professor in the Department of Physics. “By going online, of course they didn't have to do that and we could tap into a bigger pool. Some teachers may not have been able to travel had we offered it in our normal way, but now were able to stay at home and do it online.”

Participants of the program dedicate their summer break to improve their teaching skills, retrain as physics and chemistry instructors, qualify to teach dual enrollment courses, or work toward a master’s degree. Many of the teachers attending the graduate-level courses serve low-to-moderate-income students in Arizona and are focused on preparing the thousands of students among their classrooms for the 21st-century workplace.

Typically, the ASU Modeling Instruction Program holds six graduate courses in physics and chemistry each summer for a total of about 60 teachers. This year, the program saw an increase in attendance, with 75 teachers participating in the remote courses dedicated to physics and chemistry.

Those behind the program have found that modeling instruction allows students to own their scientific discoveries and learnings through prepared activities and observation, rather than being lectured about concepts. The benefits of this style of instruction include increased student engagement and developed critical thinking and problem-solving skills.

“Physics is the chief STEM pathway to compete in the 21st-century workplace, as it includes more math, technology and engineering than any other high school course,” said Professor Jane Jackson, co-director of the Modeling Instruction Program. “A student who takes interactive engagement — hands-on, minds-on — physics, such as modeling instruction, is three times more likely to earn a STEM degree than a student whose last high school science course was chemistry.”

Culbertson said the teaching method is fun, but requires an investment from teachers looking to incorporate the learning style into their classrooms.

“I think that's the downside of modeling, is that you just can't watch a YouTube video on it and say, ‘Oh, OK, I'm going to try that in my classroom.’ It doesn't work that way. You really have to live it and practice it,” he said. “Teachers report that they get better each year and it takes several years before they feel like they actually have some mastery of how to do modeling.”

Holly McTernan, a high school science teacher in Ohio, earned an MNS degree from The College of Liberal Arts and Sciences in 2011 after spending four summers in a row in Tempe. McTernan credits her family’s support as well as the help offered by Jackson with allowing her to successfully complete the program.

“Most of us could not have managed if Jane had not helped find inexpensive but safe housing and supplied us with basic essentials for studying and living there. It was truly amazing what she did for us,” McTernan said.

She had planned to return to Tempe again this year, this time to lead a modeling workshop herself. Then COVID-19 struck, everything went online and McTernan’s gut response was to say “no” to remote instruction for the workshop.

“But Jane persisted and convinced me that teachers in the MNS had identified that this was a very important class for them,” she said. “I remembered what it has done for me and how I was able to return to my own school and successfully offer AP Physics C: Electricity and Magnetism ... I felt I could not say no.”

The remote experience proved beneficial and impactful, even if it wasn’t in the typical setting.

“I was surprised at how a learning community can be encouraged and grow online. It was not unusual for participants to hang around after class even with no questions and they would say ‘I'm just here to soak more in,’ which was very encouraging,” she said. “I was truly impressed at how we could get a lot of input and discussion even without the benefit of in-person body language and the simultaneous wide view that is not possible online.”

McTernan shared that while participants were nervous about the program’s remote facilitation, many were pleasantly surprised at how much they accomplished and the new confidence the course gave them.

“Many also pointed out they felt they had learned some helpful techniques for how to teach remotely where necessary and preserve a modeling pedagogy and keep a classroom scientific discourse prevalent in the remote learning environment,” she said.

This summer’s online adaptation was in part made possible by community support: The Arizona Department of Education awarded $2,000 scholarships and local businesses Salt River Project, Core Construction and First Fidelity Bank donated $7,000 for lab equipment/technology. According to Jackson, this financial support allowed the program to provide equipment to the homes of teachers in need so that they could complete investigations during the courses.

“Arizona’s economic health depends on a strong K–12 education that includes robust physics courses,” Jackson said. “Our work is crucial.”

Monetary donations help provide tuition to high school teachers seeking continued professional development programs. Support the Department of Physics Modeling Instruction Program at asufoundation.org/modeling.